
Chapter 14: Wave Motion 
Tuesday April 7th  

Reading: up to page 242 in Ch. 14 

• Wave superposition 
• Spatial interference 
• Temporal interference (beating) 
• Standing waves and resonance 
• Sources of musical sound 

• Doppler effect 
• Sonic boom 

• Examples, demonstrations and iclicker 

• Final 25 minute Mini Exam on Thursday 
• Will cover oscillations and waves (LONCAPA #’s 18-21) 



Review - wavelength and frequency 
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= k is the angular wavenumber, 
λ is the wavelength.  

Tr
an

sv
er

se
 w

av
e 

2
T
πω = ω is the angular frequency. 

1
2

f
T

ω
π

= =

  
v = ∓ω

k
= ∓ λ

T
= ∓ f λ

frequency 

velocity 

m  y(x,t) = Acos(kx ±ωt +φ)

Amplitude 
Displacement Phase } 

Phase 
shift 

angular wavenumber 
angular frequency 

A 



The wave equation 
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• General solution for transverse waves on a tensioned string: 

  y(x,t) = Asin kx ±ωt( ) or y(x,t) = A × f n kx ±ωt( )
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The principle of superposition for waves 
• If two waves travel simultaneously along the same stretched string, 
the resultant displacement y' of the string is simply given by the 
summation 

  y' x,t( ) = y1 x,t( ) + y2 x,t( )
where y1 and y2 would have been the displacements had the waves 
traveled alone. 

Overlapping waves algebraically add to produce a resultant 
wave (or net wave). 

Overlapping waves do not in any way alter the travel of 
each other 

• This is the principle of superposition. 



Interference of waves 



Interference of waves 

  y' x,t( ) = 2Acos 1
2φ⎡⎣ ⎤⎦sin kx −ωt + 1

2φ( )
If two sinusoidal waves of the same amplitude and 
frequency travel in the same direction along a stretched 
string, they interfere to produce a resultant sinusoidal 
wave traveling in the same direction. 

• If ϕ  = 0, the waves interfere constructively, cos½ϕ = 1 and the wave 
amplitude is 2A. 

• If ϕ = π, the waves interfere destructively, cos(π/2) = 0 and the 
wave amplitude is 0, i.e., no wave at all. 

• All other cases are intermediate between an amplitude of 0 and 2A. 
• Note that the phase of the resultant wave also depends on the 
phase difference. 

Adding waves as vectors (phasors) described by amplitude and phase 



Wave interference - spatial 



• Suppose: 

  

y1 = Asin kx −ωt( )
y2 = Asin kx − ω +δ( )t{ }

  

y' x,t( ) = y1 x,t( ) + y2 x,t( )
= Asin kx −ωt( ) + Asin kx −ωt −δ t( )

Then: 

 sinα + sinβ = 2cos 1
2 α − β( )sin 1

2 α + β( )But: 

  y' x,t( ) = 2Acos 1
2δ t⎡⎣ ⎤⎦sin kx − ω + 1

2δ( )t{ }So: 

Slowly varying 
Amplitude 

Original 
wave part 

Wave interference – temporal beating 

Average 
frequency 

δ represents a 
tiny difference 
in frequency 
between the 
two waves 



Interference - Standing Waves 
If two sinusoidal waves of the same amplitude and 
wavelength travel in opposite directions along a stretched 
string, their interference with each other produces a 
standing wave. 

  

y' x,t( ) = y1 x,t( ) + y2 x,t( )
= Asin kx −ωt( ) + Asin kx +ωt +φ( )

• This is clearly not a traveling wave, because it does not have the 
form f n(kx - ωt). 

• In fact, it is a stationary wave, with a sinusoidal varying amplitude 
2Acos(ωt). 

x dependence t dependence 

Link  

  = 2Acos ωt + 1
2φ( )sin kx + 1

2φ( )



Standing waves  
and resonance 
• At ordinary frequencies, 
waves travel backwards and 
forwards along the string. 

• Each new reflected wave has 
a new phase. 

• The interference is basically 
a mess, and no significant 
oscillations build up. 



Standing waves  
and resonance 
• However, at certain special 
frequencies, the interference 
produces strong standing wave 
patterns. 

• Such a standing wave is said to 
be produced at resonance. 

• These frequencies are called 
resonant frequencies. 



Standing waves and resonance 
• At certain special frequencies, the 
interference produces strong 
standing wave patterns. 

• Such a standing wave is said to be 
produced at resonance. 

• These frequencies are called 
resonant frequencies. 



Standing waves and resonance 
• Standing waves occur whenever the 
phase of the wave returning to the 
oscillating end of the string is 
precisely in phase with the forced 
oscillations. 

• Thus, the trip along the string and 
back should be equal to an integral 
number of wavelengths, i.e. 

  
2L = nλ or λ = 2L

n
for n = 1,2,3...

  
f = v

λ
= n v

2L
, for n = 1,2,3...

• Each of the frequencies f1, f1, f1, etc, 
are called harmonics, or a harmonic 
series; n is the harmonic number. 

λ determined by geometry 



Standing waves and resonance 

• Here is an example of a two-dimensional vibrating diaphragm. 
• The dark powder shows the positions of the nodes in the vibration. 



Standing waves in air columns 
• Simplest case: 
 - 2 open ends 
 - Antinode at each end 
 - 1 node in the middle 
• Although the wave is longitudinal, 
we can represent it schematically 
by the solid and dashed green 
curves. 

  

L = 1
2 λ

⇒ λ = 2L = 2L / 1



Standing waves in air columns 
A harmonic series 
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Standing waves in air columns 
A harmonic series 

2 

3 

4 

  
λ = 4L

n
, for n = 2,4,6,....

  
f = v

λ
= n v

4L
, for n = 2,4,6,...

  λ = 4L / 2

  λ = 4L / 4

  λ = 4L / 6

  λ = 4L / 8

  L = 4
4 λ

  L = 6
4 λ

  L = 2
4 λ

Quarter wavelengths 

0 2 4 6 8 
  L = 8

4 λ
1 3 5 7 

WARNING: This slide is not in the textbook! 
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  n = 8



Standing waves in air columns 
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Musical instruments 

4
vf n
L

= ×

•  n = even if boundary 
condition same at both 
ends of pipe/string 
•  n = odd if boundary 

condition different at 
the two ends 

Universal Result 



Musical instruments 

Flute 

Oboe 

Saxophone 

Link 



Doppler effect 
• Consider a source of sound emitting at a ‘proper frequency’, f , 
moving relative to a stationary observer. 

• The observer will hear the sound with an apparent frequency, f ', 
which is shifted from the proper frequency according to the 
following Doppler equation: 

  
f ' = f

1± u v( )
• Here, v is the sound velocity (~330 m/s in air), and u is the 
relative speed between the source and detector. 

When the source is moving towards the observer, use the 
minus (-) sign so that the formula gives an upward shift in 
frequency. When the source is moving away from the 
observer, use the plus (+) sign so that the formula gives a 
downward shift in frequency.  



Mach cone angle: sin
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Doppler effect 
• Now consider a moving observer and a stationary source. 
• The source again emits at the ‘proper frequency’, f . 
• The observer will hear the sound with an apparent frequency, f ', 
which is shifted from the proper frequency according to the 
following Doppler equation: 

  
f ' = 1± u

v
⎛
⎝⎜

⎞
⎠⎟

f

This time, use the plus (+) sign if the observer is moving 
towards the source, so that the you again get an upward 
shift in frequency. Use the minus (-) sign when the 
observer is moving away from the source, so that the 
formula gives a downward shift in frequency.  

**The moving source/observer equations become equivalent when u << v. In such cases, use 
your intuition to pick the sign: approaching, f’ must increase; receding, f’ must decrease. 

** 


